La gestión térmica, un gran reto para el futuro de la electrónica.
Noticias

La gestión térmica, un gran reto para el futuro de la electrónica.

Con la tasa cada vez mayor de generación de datos y comunicación, así como el impulso constante para reducir el tamaño y los costos de los sistemas de convertidores industriales, la densidad de potencia de la electrónica ha aumentado, cuanto más pequeños y densos son los dispositivos electrónicos, más se calientan. Sus componentes funcionan peor a altas temperaturas, así que combatir el calor cada vez más intenso que producen los electrones al circular a través de los semiconductores de estos elementos supone un reto tecnológico.

Existen varias formas de refrigerar los componentes, desde simples intercambiadores de calor enfriados con ventiladores hasta sistemas más compactos y complejos. Uno de estos últimos métodos consiste en equipar los chips semiconductores con un dispositivo diminuto surcado por microcanales a través de los cuales circula un fluido que disipa el calor. En principio, convendría que estos canales tuvieran el menor tamaño posible, para que cupieran muchos en un solo chip. Sin embargo, al reducir sus dimensiones aumenta la presión requerida para que fluya el líquido, y eso se traduce en un mayor coste energético.

Elison Matioli, profesor del Instituto de Ingeniería Eléctrica de la EPFL, y sus colaboradores emplearon un chip con una fina capa de un material semiconductor llamado nitruro de galio (GaN) colocada sobre un sustrato de silicio de mayor grosor. En un chip normal este sustrato simplemente sirve de soporte a la capa de GaN, pero en el nuevo sistema los microcanales se graban en el sustrato y se alinean con las partes del chip que más suelen calentarse.

Para abordar el problema de la gran cantidad de energía necesaria para bombear el líquido refrigerante a través de los diminutos canales, los investigadores diseñaron una red de distribución formada por conductos más anchos que solo se estrechan en los lugares concretos donde se concentra el calor. Esta disposición logra reducir de manera drástica el consumo de energía. Es como nuestro sistema circulatorio, cuyos vasos sanguíneos solo se estrechan hasta transformarse en capilares en determinadas zonas del cuerpo», explica Matioli. 

Los resultados mostraron que el coeficiente de rendimiento (que mide la eficiencia del dispositivo) era 50 veces mayor que el obtenido con otro sistema de enfriamiento que emplea microcanales de grosor uniforme y no está integrado en el semiconductor.

En principio, esta tecnología podría usarse en cualquier sistema electrónico: por ejemplo, para refrigerar chips de ordenador, o en aplicaciones como las placas solares o los vehículos eléctricos, que pueden tener una densidad de potencia elevada», afirma Matioli. No obstante, indica que probablemente no representará una solución universal, puesto que no siempre resulta recomendable tener líquido circulando en el interior de los componentes electrónicos.